SAMPLE PAPER-1

Class-XII

Time : 3 hrs.

Sub-Chemistry
M.M. 70

Instructions:-

1. All Questions' are compulsory
2. Question No 1 to 8 are very short answer questions carrying 1 mark each.
3. Question No 9 to 18 are Short answer question's carrying 2 marks each.
4. Question No 19 to 27 are Short answer question's carrying 3 marks each.
5. Question No 28 to 30 are Long answer question's carrying 5 marks each.
6. Use Log table if necessary.

Q 1.	The value of $\Delta_{\mathrm{f}} \mathrm{G}^{\mathrm{o}}$ for formation of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is $-540 \mathrm{kJmol}{ }^{-1}$ and that of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is -827 kJ mol^{-1}. Is the reduction of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ possible with Al ?	1
Q 2 .	When NaBr is heated with conc $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Br}_{2}$ is produced but when NaCl is heated with Conc $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCl}$ is produced. Why?	1
Q 3.	Write IUPAC name of: $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCOCH}_{3}$	1
Q 4.	What is Kraft temperature?	1
Q 5.	Write IUPAC name of the ionization isomer of: $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$	1
Q 6.	Write an example of hydrophobic colloid.	1
Q7.	What is co-ordination number in hcp and ccp types of solids?	1
Q8.	Complete:	1
Q 9.	Explain the terms "collectors" and "froth stabilizers" in froth floatation process.	2
Q 10.	(i) How many faraday of charge is required for conversion of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to Al ? (ii) During electrolysis of $\mathrm{NaOH}, \mathrm{Cl}_{2}$ and H_{2} while for molten NaCl only Na metal and Cl_{2} gas are obtained. Explain these observations with suitable equation.	2
Q 11.	Explain the following: (i) Clemenson reduction (ii) Diazotization	2
Q12.	(i) Why are transition metal compounds coloured? (ii) Although Sc is the first transition element, its compounds are colourless. Why?	2
Q13.	Which oxide of sulphur is capable of acting as oxidizing as well as reducing agent? Why?	2
Q14.	(i) Draw diagram to illustrate the depression of freezing point when non-volatile solute is	2

	dissolved in a volatile solvent. (ii) Two liquids A and B boil at $135{ }^{\circ} \mathrm{C}$ and $1850^{\circ} \mathrm{C}$ respectively. Which of them has a higher vapour pressure at $800^{\circ} \mathrm{C}$?	
Q15.	(i) Write mechanism for the cleavage of unsymmetrical ether having a tertiary group with HI. (ii) Why ethyl ter-butyl ether cannot be prepared starting with ethanol?	2
Q16.	How do you distinguish? (i) Phenol \& Benzoic acid (ii) Propanol and ethanol	2
Q17.	(i) What is spectrochemical series? (ii) Why are 'ambidentate' ligands? Give example. OR Discuss nature of bonding and magnetic property of the complex $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ according to V.B theory. At. Number of $\mathrm{Fe}=26$	2
Q18.	Give Reasons: (a) Amines are weaker acids than alcohols. (b) Phenol does not undergo acid catalyzed dehydration.	2
Q19.	(a) What are the classes of neurologically active drugs? Write one example for each. (b) What is the use of sodium benzoate in food?	3
Q20.	(i) Why calculations based on colligative properties of solutions sometimes gives abnormal molecular mass values for solute? What is the nature of the abnormalities? (ii) 2 g of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ dissolved in 25 g of benzene shows a depression in freezing point equal to 1.62 K . Molal depression constant for benzene is $4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. What is the Percentage (\%) of association of acid, if it forms a dimer in solution?	3
Q21.	(i) Calculate the emf of the cell in which the following reaction takes place. $\mathrm{Ni}(\mathrm{~s})+2 \mathrm{Ag}^{+}(0.002 \mathrm{M}) \longrightarrow \mathrm{Ni}^{2+}(0.160 \mathrm{M})+2 \mathrm{Ag}(\mathrm{~s})$ Given that $\mathrm{E}^{0}{ }_{\text {cell }}=1.05 \mathrm{~V}$ (ii) What are the products obtained at anode and cathode when aqueous CuSO_{4} is electrolyzed with Pt electrodes?	3
Q22.	Answer the following:	3

	(i) How do you classify carbohydrates on the basis of their hydrolysis? (ii) What are nucleic acids? Mention their two important functions.	
Q23.	(i) Chromium crystallizes in bcc structure. Its atomic diameter is 245 pm , find its density. Atomic masses of: $\mathrm{Cr}=52 \mathrm{u}, \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$ (ii) In the face centered cubic arrangement of A and B atoms where A atoms are at the corner of the unit cell and B atoms at the face centres. One of the A atom is missing from one corner in the unit cell. What is the simplest formula of the compound?	3
Q24.	Account for the following: (i) Chlorobenzene is less reactive towards Nucleophilic substitution. (ii) Ethyl amine has lower boiling point than ethyl alcohol. (iii) pKa of ethanoic acid is greater than that of chloroethanoic acid.	3
Q25.	(i) Critical temperatures of $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{CH}_{4}$ are 126,134 , and 110 K respectively. Arrange them in increasing order of adsorption on the surface of activated charcoal? (ii) What happens when a freshly precipitated $\mathrm{Fe}(\mathrm{OH})_{3}$ is shaken with little dil. FeCl_{3} solution? Explain with possible reactions.	3
Q26.	(a) What are bio degradable polymers? Give example. (b) Write preparation of: (i) Novolac (ii) Teflon	3
Q27.	(i) Which metal in the $1^{\text {st }}$ transition series exhibits +1 oxidation state most frequently and why? (ii) Write down the number of 3d electrons in each of the following ions: $\mathrm{Ti}^{2+}, \mathrm{V}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+} \text { and } \mathrm{Cu}^{2+}$ Indicate how the five d orbitals are to be occupied for these hydrated ions (Octahedral) OR (a) In a given series the difference in the ionization enthalpies between any two successive d block elements is very much less than that in case of s and p block elements. Give the explanation. (b) Transition elements exhibit highest oxidation states in oxides rather than in fluorides. Why? (c) A yellow translucent solution is obtained on passing $\mathrm{H}_{2} \mathrm{~S}$ gas through an acidified solution of KMnO_{4}. Identify the solution and write the balanced chemical equation.	3
Q28.	(a) Complete the following chemical equations and balance them.	5

	(i) NH_{3} (excess) (ii) $\mathrm{P}_{4}+\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ (iii) $\mathrm{XeF}_{4}+\mathrm{SbF}_{5}$ (b) Describe the contact process for the manufacture of sulphuric acid. Write the conditions required to maximize the yield of sulphuric acid. Write equations to illustrate following properties of sulphuric acid: (i) Strong acidic character (ii) Low volatility (iii) Dehydrating nature (iv) Oxidizing action. OR (a) Bleaching of flowers by Cl_{2} is permanent, by SO_{2} it is temporary. Explain? (b) When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this tube. On cooling, the gas ' A ' changed into a colourless gas ' B '. (i) Identify the gases A and B . (ii) Write the equations for the reactions involved.	
Q29.	(i) A reaction is $1^{\text {st }}$ order in A and second order in B (a) Write differential rate equation. (b) How is the rate affected when concentration of B is tripled? (c) How is the rate affected when concentration of both $\mathrm{A} \& \mathrm{~B}$ is doubled? (ii) The kinetics of the reaction: $\mathrm{A}+2 \mathrm{~B}=>$ Products; obeys the rate equation $\text { Rate }=\mathrm{k}[\mathrm{~A}]^{1}[\mathrm{~B}]^{1} \text { for it, find: }$ a) Order of the reaction b) Apparent molecularity of reaction c) Order of reaction when B is in large excess. OR (a) The rate of reaction, $2 \mathrm{NO}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NOCl}$ is doubled when concentration of Cl_{2} is doubled and it becomes eight times when concentration of both NO and Cl_{2} are doubled. Deduce the order of the reaction. (b) The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completion at 308 K . If the pre-exponential factor for the reaction is	5

	$3.56 \times 10^{9} \mathrm{sec}^{-1}$, calculate its rate constant at 318 K and also the energy of activation.	
Q30.	(a) How do you convert the following? (i) Aniline to N -methyl aniline (ii) Benzaldehyde to a -hydroxy phenyl ethanoic acid (iii) 2-bromopropane to 1-bromopropane (b) Arrange the following in the increasing order of property indicated: (a) $\mathrm{CHF}_{2} \mathrm{COOH}, \mathrm{CHCl}_{2} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COOH}$ \qquad Acid strength (b) $\mathrm{CH}_{3} \mathrm{NH}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}, \mathrm{NH}_{3}$ ---- Basic strength in aq. solution OR (i) An unknown aldehyde $\mathrm{A}, \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$ on reaction with KOH gives B and C . A reacts with $\mathrm{Zn}-\mathrm{Hg}$ and conc HCl to give D which changes to A by $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$. B on heating with soda lime gives E . identify A to E and write all reactions. (ii) Write equations for: (a) Cross aldol condensation between benzaldehyde and ethanal in the presence of dil NaOH (b) Preparation of 2-methyl propan-2-ol from a Grignard reagent.	5

